Perilaku Api (Bagian I)

Sebelum kita dapat melakukan usaha penanggulangan kebakaran, adalah wajar apabila kita perlu untuk mengetahui dan mengenal terlebih dahulu apa dan bagaimanakah kebakaran itu. Setelah itu maka kita akan menyadari bahwa peristiwa/masalah kebakaran sesungguhnya merupakan masalah yang menjadi ancaman bagi semua orang, baik disadari ataupun tidak.
Untuk itu tulisan ini dibuat tanpa maksud menggurui mengajak semua pihak untuk lebih mengenal tentang Kebakaran khususnya api dengan lebih baik.

KIMIA API
Kita semua tahu bahwa untuk dapat menghadapi dan mengalahkan musuh, kita harus tahu segala hal tentang musuh kita kekuatan, kelemahan, strategi perang, dan lainnya. Memiliki gambaran tentang kemungkinan aksi yang akan dilakukan oleh musuh, membuat kita dapat membuat rencana untuk menga-tasi aksi tersebut, dan lebih baik lagi melakukan pencegahan agar aksi tersebut tidak dapat berjalan. Demikian juga apabila kita mengahadapi masalah kebakaran, kita harus tahu tentang bagaimanakah api dapat terjadi, bagaimana api dapat menyebar, apa yang dapat menimbulkan api, bagaimana mencegah api timbul, dan banyak lagi, sehingga kita siap menghadapi musuh kita semua, yaitu kebakaran.

A. PEMBAKARAN
Pembakaran dan api adalah dua kata yang akan selalu berhubungan dan dalam ilmu kebakaran dua kata tersebut sudah menjadi tak terpisahkan.
Pembakaran/api adalah peristiwa proses reaksi oksidasi cepat yang biasanya menghasilkan panas dan cahaya (energi panas dan energi cahaya).
Selanjutnya apakah reaksi oksidasi itu?; Dalam konteks masalah kebakaran dapat dikatakan bahwa reaksi oksidasi adalah reaksi pengikatan unsur oksigen oleh reduktor/pereduksi (bahan bakar). Sedang dalam konteks lebih luas, dalam ilmu kimia, reaksi oksidasi didefinisikan sebagai reaksi pemberian elektron oleh oksidator/pengoksidasi kepada reduktor/pereduksi.
Di atas telah disebutkan bahwa pembakaran/api adalah peristiwa oksidasi cepat, berarti ada reaksi oksidasi lambat. Untuk rekasi oksidasi lambat sebagai contohnya adalah peristiwa perkaratan besi.
Satu hal yang perlu di pahami adalah bahwa hanya gas yang dapat terbakar. Jadi bahan bakar dengan bentuk fisik padatan dan cairan sebelum ia dapat terbakar ia harus dirubah dahulu ke bentuk fisik gas. Untuk bahan bakar padat harus mengalami pyrolysis, sehingga ter-bentuk gas-gas yang lebih seder-hana yang akan terbakar. Sedang untuk bahan bakar bentuk cairan oleh panas akan diuapkan, lalu uap bahan bakar tadi yang akan terbakar.
Kembali ke masalah kebakaran ada peristiwa yang sering terjadi seiring dengan kebakaran, yaitu ledakan/explosion. Ledakan/explosion adalah peristiwa oksidasi yang sangat cepat.

B. NYALA API
Selama ini api, umumnya, selalu identik dengan nyala api, sesungguhnya ini adalah salah satu dari bentuk api. Nyala api sesung-guhnya adalah gas hasil reaksi dengan panas dan cahaya yang ditimbulkannya. Warna dari nyala api ditentukan oleh bahan-bahan yang bereaksi (terbakar). Warna yang dihasilkan oleh gas hidrokarbon, yang bereaksi sempurna dengan udara (oksigen) adalah biru terang. Nyala api akan lebih mudah terlihat ketika karbon dan padatan lainnya atau liquid produk antara dihasilkan oleh pembakaran tidak sempurna naik dan berpijar akibat temperatur dengan warna merah, jingga, kuning, atau putih, tergantung dari tem-peraturnya.

C. BARA API
Bara api memiliki cirri khas yaitu tidak terlihatnya nyala api, akan tetapi adanya bahan-bahan yang sangat panas pada permukaan dimana pembakaran terjadi. Contoh yang baik untuk bara api adalah batu bara. Warna dari bara api pada permukaan benda berhubungan dengan temperaturnya. Beberapa warna yang terlihat dan tempe-raturnya ditampilkan seperti di tabel 1.

SEGITIGA API
Dari bahasan sebelumnya kita telah tahu bahwa pembakaran/api adalah suatu reaksi oksidasi, jadi harus ada oksidator/pengoksidasi dan reduktor/ pereduksi/bahan yang dioksidasi. Dari sini kita telah men-dapatkan dua komponen peristiwa/reaksi pembakaran/api, yaitu oksidator yaitu oksigen dan reduktor di sini adalah bahan bakar. Lalu selain itu apa lagi? Dalam kehidupan sehari-hari kita mengetahui bahwa suatu benda yang dapat terbakar (bahan bakar) dalam kondisi normal tidaklah terbakar, baru apabila kita panaskan untuk beerapa lama dia akan dapat terbakar. Ini juga berarti kita telah mendapatkan satu lagi komponen pembakaran/api, dari apa yang sudah umum kita ketahui.
Dalam ilmu kebakaran ketiga komponen tersebut dikenal dengan segitiga api, yaitu sebuah bangun dua dimensi berbentuk segitiga sama sisi. Dimana masing-masing sisi mewakili satu komponen kebakaran/api, yaitu: Oksigen, Panas dan Bahan bakar.
Lalu mengapa segitiga sama sisi? Jawabannya adalah bahwa suatu peristiwa/reaksi pembakaran akan dapat terjadi apabila ketiga komponen tersebut berada dalam keadaan keseimbangannya. Kese-imbangan dimaksud di sini bukanlah sama dalam jumlah atau banyaknya, akan tetapi suatu bahan akan dapat terbakar apabila kondisi di mana terjadi/akan terjadi pembakaran/api memiliki perbandingan tertentu antara bahan dimaksud dengan oksigen yang harus tersedia. Selain itu kondisi temperatur bahan dan atau lingkungan reaksi memiliki tem-peratur (yang menggambarkan tingkat kepanasan suatu benda) tertentu juga.

D. OKSIGEN
Pada sisi pertama dari segitiga adalah oksigen. Oksigen adalah gas yang tidak dapat terbakar (nonflam-meable gas) dan juga merupakan satu kebutuhan untuk kehidupan yang sangat mendasar. Di atas permukaan laut, atmosfir kita me-miliki oksigen dengan konsentrasi sekitar 21%. Sedang untuk ter-jadinya pembakaran/api oksigen dibutuhkan minimal 16%. Kembali lagi, oksigen itu sendiri tidak terbakar, ia hanya mendukung proses pembakaran.

E. PANAS
Sisi kedua adalah panas. Panas adalah suatu bentuk energi yang dibutuhkan untuk meningkatkan temperatur suatu benda/ bahan bakar sampai ketitik dimana jumlah uap bahan bakar tersebut tersedia dalam jumlah cukup untuk dapat terjadi penyalaan.

1. Sumber-sumber Panas
Sumber-sumber panas/energi panas sangatlah beragam, dapat disebutkan disini adalah:
Arus listrik
Panas akibat arus listrik dapat terjadi akibat adanya hambatan terhadap aliran arus, kelebihan beban muatan, hubungan pendek, dan lain-lain;
Kerja mekanik
Panas yang dihasilkan oleh kerja mekanik biasanya dari gesekan dua benda atau gas yang diberi tekanan tinggi;
Reaksi kimia
Pada reaksi kimia, hubungan dengan panas, terdapat dua macam reaksi yaitu reaksi endotermis dan eksotermis. Reaksi endotermis adalah reaksi yang mem-butuhkan panas untuk dapat berjalan, sedang rekasi eksotermis adalah kebalikannya yaitu menghasilkan panas dan reaksi inilah yang merupakan sumber panas. Reaksi kimia disini tidak hanya terbatas pada reaksi perubahan atau pembentukan senyawa baru, akan tetapi dapat juga dalam bentuk proses pencampuran dan atau pelarutan;
Reaksi nuklir
Reaksi nuklir yang menghasilkan panas dapat berupa fusi atau fisi.
Radiasi matahari
Sinar matahari dapat menjadi sumber panas yang dapat menye-babkan kebakaran apabila intensitasnya cukup besar, atau di ter/difokuskan oleh suatu alat optik.

2. Cara-cara Perpindahan Panas
Panas dapat berpindah dan dalam suatu kejadian kebakaran perpindahan panas ini harus mendapat perhatian yang besar, karena apabila perpindahan panas tidak terkontrol akan dapat mengakibatkan kebakaran meluas dan atau mengakibatkan kebakaran lain.
Perpindahan panas ini dapat terjadi dengan berbagai cara, yaitu: konduksi, konveksi dan radiasi; dan khusus dalam masalah kebakaran ada juga yang disnyulutan langsung.

Konduksi
Konduksi adalah perpindahan panas yang terjadi secara molekuler, jadi panas berpindah di dalam suatu bahan penghantar (konduktor) dari satu titik ketitik lain yang memiliki temperatur lebih rendah. Sebagai gambaran adalah apabila kita memanaskan salah satu ujung sebuah tongkat besi maka lambat laun panas akan berpindah keujung lainnya, sedangkan tongkat tersebut tidak berubah bentuk.

Konveksi
Konveksi adalah perpindahan panas yang berhubungan dengan bahan fluida atau bahan yang dapat mengalir dalam bentuk gas atau cairan. Pada konveksi panas berpindah dengan berpindahnya bahan penghantar, atau lebih tepat bahan pembawa panas tersebut. Sebagai gambaran adalah apabila terjadi kebakaran di lantai bawah sebuah bangunan bertingkat, maka panas akan dibawa oleh asap atau gas hasil pembakaran yang panas ke lantai di atasnya.

Radiasi
Perpindahan panas dengan cara radiasi tidak membutuhkan suatu bahan penghantar seperti pada dua perpindahan panas sebe-lumnya. Pada radiasi panas berpindah secara memancar, jadi panas dipancarkan segala arah dari suatu sumber panas. Sebagai contohnya adalah radiasi sinar matahari, yang kita semua tahu bahwa dari jarak yang jutaan kilometer melalui ruang kosong di antariksa panas matahari dapat sampai ke bumi.

F. BAHAN BAKAR
Sisi yang lain (ke-tiga) adalah bahan bakar. Berbeda dengan apa yang umum disebut sebagai bahan bakar oleh setiap orang, bahan bakar dalam hubungannya dengan ilmu kebakaran adalah setiap benda, bahan atau material yang dapat terbakar dianggap sebagai bahan bakar. Apabila kita perhatikan, maka akan kita dapati bahwa hidup kita selalu dikelilingi oleh bahan bakar. Oleh karena itu adalah sesuatu yang wajib bagi kita untuk selalu siap siaga menghadapi ancaman bahaya kebakaran.

Ada beberapa istilah yang perlu diketahui dalam hubungannya dengan bahan bakar, yaitu:
Flash point: temperatur terendah pada saat dimana suatu bahan bakar cair menghasilkan uap dalam jumlah yang cukup untuk menghasilkan nyala sesaat dari campuran bahan bakar dan udara (oksigen).

Fire point : temperatur (akibat pemanasan) dimana suatu bahan bakar cair dapat memproduksi uap dengan cukup cepat sehingga memungkinkan terjadinya pembakaran yang kontinyu/terus menerus.

Mungkin Anda Menyukai